
Banking Application 

This project is dedicated to building a sophisticated banking application in my spare time 

around my university studies. The application will excel in managing basic banking 

operations while integrating advanced security and operational features to deliver a secure 

and user-friendly experience. The development utilizes Java and Spring Boot for the backend 

to create a RESTful API, ensuring efficient and scalable server-client communication. React.js 

is used for the front-end to create an engaging user interface, and PostgreSQL for data 

management, with deployment on AWS RDS showcasing cloud scalability and reliability. All 

communications are secured using HTTPS, providing a robust security layer for data in 

transit. The application's progression includes incorporating OAuth 2.0 for enhanced 

security, a synthetic transaction generator alongside a neural network for anomaly 

detection, and advanced deployment practices utilizing Docker and Kubernetes for 

containerization and orchestration. This multi-stage development plan meticulously 

enhances the application's capabilities, positioning it as a premier project for showcasing 

development skills in secure, scalable, and efficient software solutions, with a keen focus on 

financial technology applications. 

 

Stage 1: Core Application Development and AWS Deployment 

Objectives: 

• Develop the core functionality of the application, focusing on backend operations for 

managing users, accounts, and transactions. 

• Implement a RESTful API for efficient interaction with the application. 

• Secure the application using HTTPS. 

• Utilize AWS RDS for the application's database to leverage cloud scalability and reliability. 

Tasks: 

1. Setup and Configuration 

• Initialize the Java and Spring Boot project setup with necessary dependencies. 

• Create the basic structure for users, accounts, and transactions models. 

2. RESTful API Development 

• Design and implement API endpoints to handle CRUD operations. 

• Ensure robust API security and data validation. 

3. HTTPS Configuration 

• Secure application data transmission using HTTPS. 

4. Database Deployment on AWS RDS 



• Configure PostgreSQL on AWS RDS, setting up secure access and optimal 

performance settings. 

5. Application Testing 

• Conduct unit and integration tests to ensure reliability and performance. 

6. Documentation 

• Document the setup process, API endpoints, and deployment steps. 

 

Stage 2: Security Enhancements and User Interface Development 

Objectives: 

• Enhance application security with OAuth 2.0 integration for authentication and 

authorization. 

• Develop a user-friendly interface for easier interaction with the application. 

Tasks: 

1. OAuth 2.0 Integration 

• Implement OAuth 2.0 to secure user authentication and resource authorization. 

• Adapt the user model to incorporate OAuth 2.0 credentials. 

2. User Interface Development 

• Design and implement a responsive web interface using modern front-end 

technologies. 

• Ensure the front-end seamlessly interacts with the backend via the RESTful API. 

3. Security Testing 

• Validate the OAuth 2.0 implementation and overall application security through 

rigorous testing. 

 

Stage 3: Synthetic Transaction Generator and Neural Network 

Implementation 

Objectives: 

• Develop a synthetic transaction generator to create a diverse dataset of financial 

transactions. 

• Train a neural network to identify suspicious transactions, improving the application's 

security and reliability. 

Tasks: 

1. Synthetic Transaction Generator Development 



• Design and implement a system to generate synthetic financial transactions, 

considering various patterns, amounts, and behaviours to mimic real-world banking 

activity. 

• Ensure the generated data covers a wide range of transaction types, including 

normal and atypical patterns, to train the neural network effectively. 

2. Neural Network Training 

• Select an appropriate neural network architecture for anomaly detection in 

transaction data. 

• Train the neural network using the synthetic transaction dataset, tuning the model to 

recognize patterns indicative of suspicious activity. 

3. Integration with the Banking Application 

• Incorporate the trained neural network into the application's workflow to 

automatically analyse transactions in real-time. 

• Implement a system to flag or block transactions deemed suspicious, with a 

mechanism for manual review and user notification. 

4. Testing and Refinement 

• Conduct thorough testing of the synthetic transaction generator and neural network 

model to ensure accuracy and reliability. 

• Adjust the neural network model based on feedback and testing results to improve 

detection capabilities. 

 

Stage 4: Implementing Two-Factor Authentication and 

Containerization 

Objectives: 

• Enhance application security by implementing two-factor authentication (2FA). 

• Adopt containerization using Docker and orchestration with Kubernetes to improve 

deployment processes and scalability. 

Tasks: 

1. Two-Factor Authentication Implementation 

• Research and select a 2FA method (e.g., SMS, email, authenticator app) that best 

suits the application's needs. 

• Integrate 2FA into the user authentication flow, ensuring a seamless and secure user 

experience. 

2. Containerization with Docker 



• Containerize the banking application and its components using Docker, creating 

consistent and isolated environments for development, testing, and production. 

• Define and configure Docker files and Docker Compose files for the application 

services and dependencies. 

3. Orchestration with Kubernetes 

• Deploy the containerized application on a Kubernetes cluster, configuring Kubernetes 

resources such as pods, services, and deployments for optimal performance and 

scalability. 

• Implement monitoring and logging services within the Kubernetes environment to 

ensure high availability and to troubleshoot potential issues. 

4. Security and Performance Testing 

• Conduct comprehensive security testing, particularly focusing on the effectiveness 

and user experience of 2FA. 

• Test the containerized application in various scenarios to ensure performance, 

scalability, and reliability are maintained. 

 


