Banking Application

This project is dedicated to building a sophisticated banking application in my spare time
around my university studies. The application will excel in managing basic banking
operations while integrating advanced security and operational features to deliver a secure
and user-friendly experience. The development utilizes Java and Spring Boot for the backend
to create a RESTful API, ensuring efficient and scalable server-client communication. React.js
is used for the front-end to create an engaging user interface, and PostgreSQL for data
management, with deployment on AWS RDS showcasing cloud scalability and reliability. All
communications are secured using HTTPS, providing a robust security layer for data in
transit. The application's progression includes incorporating OAuth 2.0 for enhanced
security, a synthetic transaction generator alongside a neural network for anomaly
detection, and advanced deployment practices utilizing Docker and Kubernetes for
containerization and orchestration. This multi-stage development plan meticulously
enhances the application's capabilities, positioning it as a premier project for showcasing
development skills in secure, scalable, and efficient software solutions, with a keen focus on
financial technology applications.

Stage 1: Core Application Development and AWS Deployment
Objectives:

e Develop the core functionality of the application, focusing on backend operations for
managing users, accounts, and transactions.

e Implement a RESTful API for efficient interaction with the application.
e Secure the application using HTTPS.
e Utilize AWS RDS for the application's database to leverage cloud scalability and reliability.
Tasks:
1. Setup and Configuration
e Initialize the Java and Spring Boot project setup with necessary dependencies.
e Create the basic structure for users, accounts, and transactions models.
2. RESTful APl Development
e Design and implement APl endpoints to handle CRUD operations.
e Ensure robust API security and data validation.
3. HTTPS Configuration
e Secure application data transmission using HTTPS.

4. Database Deployment on AWS RDS



e Configure PostgreSQL on AWS RDS, setting up secure access and optimal
performance settings.

5. Application Testing
e Conduct unit and integration tests to ensure reliability and performance.
6. Documentation

e Document the setup process, APl endpoints, and deployment steps.

Stage 2: Security Enhancements and User Interface Development

Objectives:

e Enhance application security with OAuth 2.0 integration for authentication and
authorization.

e Develop a user-friendly interface for easier interaction with the application.
Tasks:
1. OAuth 2.0 Integration
o Implement OAuth 2.0 to secure user authentication and resource authorization.
e Adapt the user model to incorporate OAuth 2.0 credentials.
2. User Interface Development

e Design and implement a responsive web interface using modern front-end
technologies.

e Ensure the front-end seamlessly interacts with the backend via the RESTful API.
3. Security Testing

e Validate the OAuth 2.0 implementation and overall application security through
rigorous testing.

Stage 3: Synthetic Transaction Generator and Neural Network
Implementation
Objectives:

e Develop a synthetic transaction generator to create a diverse dataset of financial
transactions.

e Train a neural network to identify suspicious transactions, improving the application's
security and reliability.

Tasks:

1. Synthetic Transaction Generator Development



Design and implement a system to generate synthetic financial transactions,
considering various patterns, amounts, and behaviours to mimic real-world banking
activity.

Ensure the generated data covers a wide range of transaction types, including
normal and atypical patterns, to train the neural network effectively.

2. Neural Network Training

3.

Select an appropriate neural network architecture for anomaly detection in
transaction data.

Train the neural network using the synthetic transaction dataset, tuning the model to
recognize patterns indicative of suspicious activity.

Integration with the Banking Application

Incorporate the trained neural network into the application's workflow to
automatically analyse transactions in real-time.

Implement a system to flag or block transactions deemed suspicious, with a
mechanism for manual review and user notification.

4. Testing and Refinement

Conduct thorough testing of the synthetic transaction generator and neural network
model to ensure accuracy and reliability.

Adjust the neural network model based on feedback and testing results to improve
detection capabilities.

Stage 4: Implementing Two-Factor Authentication and
Containerization

Objectives:

Tasks:

Enhance application security by implementing two-factor authentication (2FA).

Adopt containerization using Docker and orchestration with Kubernetes to improve
deployment processes and scalability.

Two-Factor Authentication Implementation

Research and select a 2FA method (e.g., SMS, email, authenticator app) that best
suits the application's needs.

Integrate 2FA into the user authentication flow, ensuring a seamless and secure user
experience.

Containerization with Docker



Containerize the banking application and its components using Docker, creating
consistent and isolated environments for development, testing, and production.

Define and configure Docker files and Docker Compose files for the application
services and dependencies.

3. Orchestration with Kubernetes

Deploy the containerized application on a Kubernetes cluster, configuring Kubernetes
resources such as pods, services, and deployments for optimal performance and
scalability.

Implement monitoring and logging services within the Kubernetes environment to
ensure high availability and to troubleshoot potential issues.

4. Security and Performance Testing

Conduct comprehensive security testing, particularly focusing on the effectiveness
and user experience of 2FA.

Test the containerized application in various scenarios to ensure performance,
scalability, and reliability are maintained.



